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ABSTRACT

This report describes a preliminary investigation of the applicability of fractal

geometry to damage modeling. Microstructural heterogeneity, both the size
distribution and spatial distribution of microstructural features, can be mod-

eled simply and compactly with a fractal dimension. The ultimate goal of this

research is the development of an alternative to continuum damage mi-

cromechanics models. The scaling nature of fractal geometry may aid the de-
velopment of models that connect microscale damage with global mechanical

*response.

An assumed fractal size distribution of microcracks in a brittle solid was
used to derive the Weibull distribution for strength, and a relationship be-
tween the Weibull shape parameter and the fractal dimension of the flaw dis-
tribution was obtained. Published data on the strength of glass fibers were

consistent with a fractal flaw distribution. Stable damage evolution in

tougher materials was also considered. Recent work by Schapery on path-in-

dependent potentials combined with the fractal description of microscale
damage shows promise as a framework for formulating damage models.

A limited amount of experimental validation of the fractal description of
microstructure was obtained. Fractal clustering of second-phase particles in a

polyvinyl chloride (PVC) sample, for example, led to a self-similar distribu-
tion of microvoids on the fracture surface. In certain other cases, however,
microstructural features do not exhibit self-similar fractal characteristics. For

example, damage zones that form during Mode II delamination of graphite-

epoxy composites contain an array of regularly spaced microcracks that are all

approximately the same size.
Although preliminary results are promising, further work is necessary to

* develop the concepts of fractal damage more fully.
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1 1.0 INTRODUCTION

Most modern engineering materials contain microstructural heterogeneities

such as fibers, whiskers, particulates, and second-phase particles. These con-

stituents can greatly enhance mechanical and thermal properties. These new
materials, however, were developed largely by trial and error, because our

understanding of the relationships between processing, structure, and proper-

ties is incomplete at best. Although it is now possible to tailor the elastic and
thermal properties of composite materials, the nonlinear mechanical re-

sponse of a given material cannot be predicted in advance.
Many composites and multiphase materials experience microscale dam-

age prior to ultimate failure. This subcritical damage often produces a tough-

ening effect in the material. For example, two brittle ceramics can be com-
bined to produce a relatively tough ceramic composite, because initial crack-

ing in such materials dissipates energy without causing catastrophic failure

A substantial number of researchers are studying damage development

in advanced materials. Two basic approaches to this problem have emerged.

Continuum damage models assume the material to be a homogeneous con-
tinuum, and treat damage development through internal state variables.

SDiscrete phenomena such as fibers, particles, microcracks and voids are aver-

aged through the material. Micromechanics models, however, consider

i events at the microscopic level, such as microcracking, fiber/matrix debond-

ing, and void formation. These models usually analyze a unit cell, such as

single fiber surrounded by matrix; an implicit assumption of such models is

that the material as a whole consists of a periodic array of these unit cells.
Both types of damage model have advantages and disadvantages.

Continuum models are computationally simpler, but they omit important
microstructural information in their formulation. Such models are descrip-

tive rather than predictive; numerous experiments are often required to spec-

ify adjustable parameters in these models. Micromechanics models provide3 information at the local level, but are computationally expensive, and the

connection between these local models and global behavior requires a num-

ber of assumptions.

A unified model that simultaneously considers local damage and global
response is not currently available. Modeling an entire structure with a mi-

I
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I cromechanics methodology would require hundreds or even thousands of

unit cells, a level of complexity that is well beyond current computational ca-

pabilities. An approach that contains sufficient detail to model the problem

adequately, yet is reasonably simple, could make a substantial contribution to

this field.
Fractal geometry [2] is a relatively new branch of mathematics that is ca-

pable of describing complex and disordered phenomena simply and com-

pactly. The scaling nature of fractals suggests a potential application as a
"mesomechanics [3]" tool. That is, this discipline may provide a means to

connect microstructural detail with macroscopic behavior without resorting

to enormous computer models. A number of applications of fractal geometry

to materials science have already been identified. The Materials Research

Society has devoted several symposia to this topic [4-6].

This study represents a brief exploration of the possibilities for fractals in

the areas of micromechanics and damage modeling. Although it is unlikely

that fractal geometry will prove to be a panacea, the preliminary results de-

scribed herein are sufficiently promising to encourage further study.

I
2.0 A PRIMER ON FRACTALSI

The term "fractal" was coined by Mandelbrot [2] to describe a particular phe-

nomena in nature; fractal geometry is the name he has given to the branch of

mathematics that has developed in the past century to characterize these

phenomena. In his 1982 book, Mandelbrot considers such diverse topics as

the shape of clouds, the length of coastlines, the spatial distribution of celes-

tial bodies, and Brownian motion. In each case, he shows that seemingly

I complex phenomena can be described simply and succinctly with a fractal di-

mension.

In Euclidean geometry, the dimensionality of shapes and objects is al-

ways an integer: lines and curves are one-dimensional, planes and surfaces

are two-dimensional, and solid shapes are three-dimensional. Fractal objects,

however, usually have a fractional dimension. Fractal curves, for example,

typically have a dimensionality between 1 and 2, and the dimensionality of a

fractal plane is between 2 and 3.

I
I



1 3

U Consider a jagged coastline, such as the west coast of Britain (or, to take a

more extreme example, consider the fiords of Norway). If one wanted to

measure the length of this coastline, a reasonable first step might be to use a

pair of dividers set to a known spacing and "step" the dividers along a map of

the coastline. Such a measurement would not yield the "true" length; rather

it would be based on an approximation of the coastline as a series of line seg-

ments. The length measurement would undoubtedly change if the setting on

the dividers was adjusted. A man walking along this coastline could estimate
its length by counting his steps and multiplying by the length of each stride. If

he stayed as close as possible to the water's edge, he would take a much more
meandering path than the dividers on the map, because the coast contains

*numerous inlets and other irregularities that are too small to be represented

on a map. Consequently, he would walk a much greater distance that the3 length estimate from the map. Similarly, an ant walking along the water's

edge would travel further than the man if both creatures covered the same

segment of coastline.

Figure 1 shows coastline measurements for a number of locations

throughout the world [2]. With the exception of the South African Coast, the

measured coastline length increases with decreasing length of line segment,
and the trends are linear on a log-log plot. This type of relationship is indica-

tive of fractal curves, as discussed below. Note that when a Euclidean shape

such as a circle is approximated by a series of line segments (i.e., a polygon),

the measured perimeter converges to the true value as the length of the seg-
ments decrease. The measured length of the fractal coastlines do not con-

verge, however.

For the curves in Fig. 1 that are linear, the measured length, L, can be
represented by a power law:

L = Loe-m = NE (1)I
where E is the size of the line segment and N is the number of segments.

3 Solving for N gives

3 N = Lo -(m + 1) = Lo E-D (2)

I
I
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U The number of line segments required to approximate a Euclidean curve is

inversely proportional to the segment length (e); m = 0 and D = 1 in this case.

Similarly, if a Euclidean surface were paved with square tiles with sides cf
length E, the number of tiles required to cover the surface would be propor-
tional to E-2 . Thus D represents the dimensionality of the object. A fractal
curve, such as the coastline of Britain, typically lies somewhere between a
one-dimensional and two-dimensional object1 ; D is the fractal dimension in

this case.

An implicit assumption of fractal geometry is that the exponent D is in-
dependent of e. Provided this assumption is approximately valid over sev-
eral orders of magnitude, a fractal description of a natural phenomenon can

*be very useful.

It is possible to construct shapes for which the fractal description is rigor-5ously correct. Figure 2 shows a Koch snowflake [2]. This shape is constructed

through an infinite number of operations on a six-sided star, as Fig. 2 illus-
trates. The perimeter of this object is infinite, but the area enclosed by the

fractal curve is finite. Also, the derivatives are undefined at all points along
the boundary. The exact value of the fractal dimension of the Koch snowflake

is log 4/log 3. The Koch snowflake and similar constructions can be used to
model natural phenomena such as coastlines, although the latter contains a5degree of randomness that the idealizations do not consider.

A key feature of many fractals is that they are self-similar. Consider a3segment of the boundary of the Koch snowflake in Fig. 2. If the curve were

viewed at higher magnifications, its appearance would not change; a self-sim-
ilar fractal looks identical at all length scales.

A number of investigators [7-10] have used fractal geometry to study frac-
ture in engineering materials. In a brittle material, the fracture toughness (in
terms of critical 'energy release rate, Gc) is two times the surface energy, Ys,
provided the fracture surface is smooth (i.e., Euclidean). If the fracture surface

Sis fractal, however, the toughness depends on the scale of examination. At

the atomic scale, Gc = 2ys, but the macroscopic toughness is higher because the5 effective area of a rough fracture surface is significantly larger than the pro-
jected area. If the area is measured by paving the surface with squares, as dis-

I
1A fractal curve that lies in a plane can have a fractal dimension as high as 2, in which case
the curve completely fills the plane.

I
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U cussed above, the measured area is proportional to E2-D. Ti'e macroscopic

toughness can be estimated from the ratio of the projected area of the sample

(L2) to the measured area at the atomic scale:

I = 2 ys (L)D- 2 (3)

I where L is a characteristic sample dimension and ao is the atomic size.

Equation (3) indicates that toughness increases with increasing D; the en-

I hanced toughness is a result of the additional surface area created during frac-

ture. Although there is often a connection between fractal dimension and
I toughness in brittle materials, such a relationship is usually not observed in

more ductile materials. In ductile metals, for example, most of the fracture

energy is dissipated through dislocation motion; there is not necessarily a di-

rect relationship between the fracture work and the amount of surface area
created.

53.0 THE CONCEPT OF FRACTAL MICROSTRUCTURES

Fractal geometry not only characterizes many non-Euclidean shapes such as
coastlines, mountain ranges, and fracture surfaces, the methodology can also

describe various types of disorder and heterogeneity. In this study, we consid-

ered two types of fractal description for microstructural heterogeneity. Most
of the focus was on fractal size distribution; in real materials, entities such as

microcracks and second-phase particles are seldom of a uniform size. In addi-

tion, we briefly addressed disordered spatial distribution of microstructural

*features.

3 3.1 Fractal Size Distribution

Consider a material of volume V which contains microcracks of various

sizes. If we assume that these cracks are distributed in size as a scaling fractal,
the cumulative microcrack density, p, will follow a hyperbolic distribution:I

I
I
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3 Nr(a > ac)
p(ac) V -ac "D  (4)

where a is a characteristic crack dimension, ac is a reference crack size, X is a

constant, and D is the fractal dimension. The notation Nr() refers to the

number of microcracks for which the statement in parentheses is satisfied; in

this case, the number of microcracks greater than a given size.

The incremental microcrack density can be approximated by

IAp(ac) = Nr(ac < a < ac+Aa)
Vp ac D~ac-(D+l)Aa (5)IV

provided Aa << ac. Thus both p and Ap follow power-law distributions.

Although there appears to be nothing particularly striking about a power-law

distribution for microcrack size, the exponent D has a particular physical sig-
nificance, as explained below.

In real materials there is an upper limit on the microcrack size. Re-inte-

grating Eq. (2) with an upper threshold crack size, au, gives:

p(ac, au) = X (ac -D - au -D) for ac < au (6)U
This relationship obviously reduces to Eq. (4) when ac << au.

If Eq. (6) describes the distribution of an array of penny shaped cracks,

where a is the crack radius, the cumulative surface area in a unit volume is
i given by

nTDX
S = 2-D (au2-r - ac2-D) (7)

When ac << au and D # 2, one of the terms in parentheses dominates, depend-
ing on the value of D. If D > 2, the cumulative area is asymptotic to ac = 0;

thus the microcracks form a fractal surface. When D < 2, the cumulative area

is finite and is controlled primarily by the largest cracks. (Note that the upper
limit, au, is necessary in this latter case; conventional fractal theory implies

that au is infinite, which would make the cumulative area zero if D < 2.)

I
I
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I If a stress were applied to the material such that the crack faces moved
apart, the resulting volume increase for a particular crack would be propor-
tional to a3 . Thus it can be shown that D must be less than three in order for
the total sample volume to remain finite.

3.2 Fractal Clustering

UThe spatial distribution of microcracks or other microstructural features may
also be amenable to a fractal description. Figure 3 shows an idealized (2-D) ex-

ample of fractal clustering, where particles form clusters, which form larger
clusters, and so on. Note the self-similarity of the structure, such that its ap-

I pearance is identical at all scales. For this example, D = 1.
Of course real microstructures exhibit some degree of randomness, and3 thus do not form regular patterns as in Fig. 3. However, there is evidence

that certain materials exhibit some degree of fractal clustering, as discussed be-
low. This self-similar structure may greatly simplify micromechanical mod-

eling of such materials.

I
4.0 APPLICATIONS TO DAMAGE MODELINGI

4.1 Brittle FractureI
In brittle materials, a flaw becomes unstable when the Griffith energy crite-
rion is satisfied. For a penny shaped crack, the critical stress (applied normal

to the crack plane) is given by

I wE
f 2ac (8)

where Gf is the fracture stress, E is Young's modulus, ac is the critical crack
radius, and wf is the fracture work per unit area. For ideally brittle solids, wf
is the surface energy, ys. For quasi-brittle materials, such as BCC metais on the
lower shelf of toughness, wf includes a plastic work component.

Brittle fracture is, by nature, a weakest link phenomenon. Only one flaw
need satisfy the Griffith criterion to cause failure. Thus the largest oi most

I
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I favorably oriented flaw in a material dictates the fracture strength. If a speci-

men of volume V contains p critical flaws per unit volume, where p is small
and V is large, the failure probability is given by

F = 1 - exp(-pV) (9)

Equation (9) is a special case of the Poisson distribution; F is equal to the prob-
ability of sampling at least one critical flaw in V.

Consider a uniaxial tensile specimen of volume V with a fractal distribu-

tion of penny shaped microcracks oriented perpendicular to the stress axis 2 .

Combining Eqs. (4), (8) and (9) gives

SF=1 - exp -VC D (10)

where

0 =,[ 2 T./D

I r E wf

Equation (10) has the form of a Weibull distribution on fracture stress. The

Weibull shape parameter (or slope) is 2D. Weibull [111] originally suggested
this distribution for characterizing the strength of brittle materials because it

seemed to fit experimental data. Invoking fractal geometry provides a physi-

cal basis for the Weibull distribution. There is a direct correspondence be-

tween Weibull slope aid the fractal dimension of the flaw distribution.

When an upper cut-off on crack size is imposed (Eq. 6) the distribution be-

* comes

* F = 1 - exp(Vf7D - (11)

2 Allowing for randomly oriented microcracks would not change the results. Given a crack of
radius a whose normal forms an angle 0 with the stress axis, it is possible to define an effective
crack radius a* = a*(a, 4) which satisfies Eq. 181 at fracture. If the distribution of a is
hyperbolic, a* should also be hyperbolic.

I
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where ou is the threshold fracture stress corresponding to the maximum

crack size, au. Equation (11) is a truncated Weibull distribution.

According to Eqs. (10) and (11), the Weibull slope cannot be greater than 6

if the flaw distribution is fractal. However, the published literature contains
numerous fracture strength data with Weibull slopes in excess of 6. For ex-

ample, Wiederhorn and Fuller [12] report Weibull slopes of 7.0 for ordinary
glass and 9.8 for an A1203 ceramic. Wagner, et al. [13] measured slopes rang-

ing from 4.1 to 10.5 for various aramid filaments.

The threshold stress, ou, offers a potential explanation for the discrep-

ancy between the expected range of Weibull slopes and experimental values.
The authors mentioned above used a two parameter Weibull formulation

(Eq. 10) which may have led to artificially high Weibull slopes. Sample calcu-

lations with Eq. (11) illustrate this point. Figure 4 is a plot of Eq. (11) (on a
two parameter Weibull graph) assuming that au = 1000 MPa, 2D = 4.0, and E =

8400 MPa mm 0 .75 . Distributions are plotted for sample volumes ranging
over several orders of magnitude. The curve for the smallest volume is

nearly linear with a slope of 4.0. As volume increases, the fracture stress

tends to decrease, and the apparent Weibull slope (on the two parameter
graph) increases. As the samples become very large, the probability of sam-
pling a microcrack with radius close to au in each specimen approaches 1, and

the apparent Weibull slope approaches infinity.

A three-parameter distribution of the form of Eq. (11) may be more real-
istic than the two parameter formulation. It would be interesting to apply Eq.
(11) to the data in [i2] and [13] to see if D is less than 3 in each case.

Unfortunately the authors of these articles did not report individual rf val-

ues.

4.2 Stable Growth of Microcracks

At initiation of crack growth, the applied energy release rate, G, equals the
material's resistance to crack extension, R. For brittle materials, R = 2wf =

constant; fracture tends to be unstable because an increase in G cannot be
matched by the material resistance. For stable crack advance, the following

* condition must be met:

dqG(o, a) = dR(a) (12)

I
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I
Crack propagation will be unstable if dG > dR. Stable crack extension usually
requires R to increase with crack growth. However, this need not be the case
because there are certain configurations for which G decreases with crack ex-3 tension. Equation (12) can be written as

_G d G  dR
u da =- da (13)

For a penny shaped crack with stress applied perpendicular to the crack plane,

4 a2 aU _i= (14)iIT E
Substituting Eq. (13) into Eq. (14) and rearranging gives

I da 8 da dR 4(
a - tE Ta E) (15)

If a material contains a distribution of penny shaped cracks and dR/da is the
same for all crack sizes at a given stress level, da/a is also constant for all a.
That is, the damage growth is self similar. In the example which follows, self

* similar crack growth is assumed.

Consider a uniaxial tensile specimen with cross sectional area As.
Assume that the material contains a fractal distribution of microcracks (Eq. 6)

which are oriented perpendicular to the stress axis. For this example, it is as-
sumed that the microcracks do not interact with the specimen boundaries or
each other 3 . Crack growth will result in a loss in stiffness in the specimen.
The definition of G based on elastic compliance can be invoked to estimate the

* stiffness loss:

p2 aC
I 2 aA (16)

I 3 Crack interaction would have the effect of making each crack behave as if it were somewhat
larger or smaller. These effects could be modeling by assuming a fractal distribution of the
effective crack size.

I
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I
where P is the applied force, A is the crack area and C is the elastic compliance

(= displacement/force). For a single penny shaped crack in the tensile speci-

men, the increase in compliance due to a crack extension da is given by
~16 a2 da

dC= EAs 2  (17)

The specimen in the present example contains a distribution of microcracks,

each of which will contribute to the compliance increase as it grows. Thus the

total compliance change is determined by summing the contributions of all

flaws:
au

dC = -V fdC(a) a da (18)

0

Note that this integral is taken over a constant state of damage. The inte-
grand is obtained from Eqs. (6) , (15) and (17). This integral can then be solved3 idirectly by assuming dR/da does not depend on crack size. Furthermore, one

can obtain an expression for the change in effective modulus, E*, by noting
that C = V/(E* As). That is,

128Dpuau3 _* 2 dR 4 a 2 -1
dE* d (19)

n (3-D) y_ da - E

3 where Pu = .au - D. Both ?, and au change with crack growth but Pu is con-

stant. In addition, the assumption of self similar damage (i.e., da/a is inde-

pendent of crack size at a given stress) implies that D is also constant. Note
that the integral in Eq. (18) was solved by assuming D < 3; a fractal dimension

greater than three is physically inadmissible in this case because such a value

would imply that modulus increases without bound when a finite stress is
applied.

Figure 5 illustrates the stress-strain behavior of a material modeled by Eq.

(19). A change in stress, do, results in a decrease in effective modulus, dE*.

The entire uniaxial constitutive behavior of this material is obtained by inte-

grating the above equation from the initial damage state to final instability.I
I
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Note that the present analysis does not consider dilatational effects due te the
open cracks. It is assumed that the material would return to zero stress and

Istrain if unloaded.
The above example is obviously an oversimplification of real material

behavior. One would normally expect the slope of the material resistance

curve (dR/da) to depend on crack size. In addition, real microcracks would
not be perfectly flat and penny shaped as was assumed. In fact there may be a

separate fractal dimension associated with the microcrack shape. Finally, the
above derivation did not consider a more general three dimensional state of

stress.

4.3 Microcrack Toughening

Microcrack formation dissipates energy, and thus produces a toughening ef-
fect, provided a microcrack does not become unstable and lead to complete
failure. Consider a macroscopic crack, with current length c, propagating in a

solid. Suppose that this macroscopic crack produces a process zone of microc-
racks on either side of the crack plane, as Fig, 6 illustrates. Assuming a unit

out-of-plane dimension for the sample, the global energy release rate for this
crack corresponds to the work dissipated in the volume 2h dc, divided by dc.
If the flaw distribution is fractal (with an upper cut-off) and the work dissi-
pated by each microcrack is 2n Ys a2, the global toughness is given byU 4ir hYs DX

G = 4n-2- D (au 2- D - ac2-D) (20)

If D > 2, the smallest microcracks would provide the largest contribution to
fracture work, while the larger flaws would dominate if D < 2.

Equation (20) does not include the dilatational contribution to fracture

work. Dilatational work would scale with the specific volume change, AV/V,

which is proportional to au 3-D, where D < 3.

4.4 Path-Independent Potentials

The damage models derived in previous sections are relatively simple. The
analysis of effective modulus, for example, assumed uniaxial deformation

I
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i and non-interacting microcracks. Recent work by Schapery [14], which is de-

scribed below, provides a mathematical framework for more detailed damage

i models for fractal materials. He showed that certain materials that sustain ir-

reversible damage exhibit limited path independence and can be described

i with a potential function.

Consider a body that is subject to the generalized loads Qi and generalized

displacements qj (j = 1,2, .. J), where Q) and qj may correspond to stress and

strain, load and displacement, moment and curvature, etc. The total work re-

quired to deform the body to qj from an initially unloaded state can be ex-

pressed as follows:

WT = W + WS (21)

where WT is the total work, W is the strain energy, and Ws is the work dissi-

pated during structural change. Equation (21) and the relationships that fol-

low can be applied a global scale or to an infinitesimal point, provided deriva-

tives are continuous throughout the body 4 . Let us assume that W = W(qj, Sm),

where Sm (m = 1,2, . . . M) are (as yet unspecified) structure parameters, and

that W exhibits the properties of an elastic potential:

IW (22)
QJ = qj

i The total work, in terms of generalized forces and displacements, is given by

WT = fq-dq (23)I
Unless otherwise noted, the summation convention on repeated indices is

followed throughout this report. The difference between total work and

strain energy is that WT is the work done on the body during the actual de-

formation process, while W is the work done when all Sm are held constant.

i 4 Microcracks. voids and similar features are treated as boundaries in the body, in contrast to
continuum damage models that average the effects of microstructural heterogeneity through
the body.

I
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i The relationship between total work and strain energy can be derived by

considering an infinitesimal change in W:

dW = -qj dqj +j dSm = Qjdqj - GmdSm (24)

where Gm are the thermodynamic forces, defined as

Gm -Si (25)

Comparing Eqs. (23) and (24) leads to

i WT= W + fGmdSm (26)

* Thus,

WB fGmdSm (27)

i If it is assumed that WS is a state function of the structure parameters, that is

3WS = WS(Sm), the following is true when M 0:

aws
i Gm- Si

or

3 Gm = Rm (28)

where Rm are material resistance parameters. Equation (28) describes stable

damage evolution. The thermodynamic driving force, Gm, is the energy
available for structural changes, while Rm is the energy required for these

i changes. Thus Eq. (28) is a more general statement of the energy release rate-

material resistance relationship of fracture mechanics (Eq. 12).

i Suppose that during deformation, N structure parameters undergo

change (1 5 N 5 M), and the other (M-N) parameters remain constant. Let us

I
I
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I now evaluate the variation in total work with respect to changes in Sn (n =

1,2,... N):

aWT _W aWsISn - Sn + 0 (29)

Thus total work is stationary with respect to changes in Sn. Schapery [14] ar-

gued that total work follows a minimum path, provided the body is taken
through stable states. Consequently, a disturbance in the structure parame-

ters, Sn, from their equilibrium values requires positive work. Conversely, it

is possible to derive the Sn as functions only of qj by minimizing the work.

Thus Sn = Sn(qj) when Eq. (28) is satisfied, which implies WT = WT(qj).
Therefore,

Qj= aqj (30)

That is, WT displays the properties of an elastic potential. The total work is
path independent for the qj(t) histories that produce changes in the same set

of structure parameters, Sn.
The structure parameters can be defined in a variety of ways depending

on the problem under consideration. Unlike most continuum damage mod-
els, however, where the internal state variables are essentially fitting parame-1 ters, the Sm can have a physical interpretation. In a macroscopic crack growth

problem, for example, M can be set equal to 1, and S can denote the crack area.3 In this case, Eq. (28) reduces to the well-known result from fracture mechan-

ics; i.e., G = R for stable crack growth. The material resistance may be a con-

stant (such as in brittle materials where R = 27s), or R can be a function of S.

Let us return to the problem of a body containing a fractal distribution of
microcracks (Sections 4.1 to 4.3). Let Sm be the areas of individual penny-
shaped cracks in the solid: Sm = nam2 . Assume that the microcracks grow ac-

cording to a power law function of crack area:

Rm = cc (ASm)P

I 7E (am' - am(o)2) (31)
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I
where a and P are material constants and am(o) are the initial crack radii. The

work dissipated in growing the microcracks from an initial state is given by

3 Sm
WS f a(Sn- Sm(o))P dSm (32)

3 Si(o)

The summation convention applies to Sm; the contributions from each mi-
crocrack must be summed to obtain the total WS. For the remainder of this
derivation, we will drop the index notation and assume the crack size distri-

bution is continuous. The energy dissipated by a single microcrack of
(current) radius a is given by

I ws(Aa) = W + 1 (33)

3 If the initial flaw distribution is fractal (Eq. 5), the total work dissipated by
cracks ranging in size from ac to au is as follows:

I au( o)

WS ws(Aa) a( da(0 )l~ a~oa(o)

ac(O)

Iau(o) 
2 D D

a { ( 2 _ 1) +l a( ) da(0) (34)

f [3+1
ac(O)

I where 4D = (a + a(o))/a(o)). If we assume, as a first approximation, that the
damage growth is self-similar (i.e., (D does not depend on a(0 )), Eq. (34) has a

3 closed-form solution:

aS = ((2 - 1)0+1 (au(o)( 2 - 2D+2) (-35Ws + 1)(235-)D_+_2)([3 +1)(213 -D +2)

I
I
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I
The assumption of self-similar damage is not strictly valid in this case, how-3 ever. The relative damage growth, a), depends on flaw size in accordance to

the assumed growth law (Eq. 31).I
5 5.0 EXPERIMENTAL EVIDENCE FOR FRACTAL MATERIALS

The preceding analyses would ultimately be of little practical value unless ex-

amples of fractal microstructures could be found in nature. Although mate-
rials do not always exhibit the fractal properties discussed in Sections 3 and 4,

I there are cases where the fractal model fits quite well, as discussed below.

3 5.1 Flaw Distribution in Glass

Griffith, in his classic 1920 paper [15], reported data that are well suited to a test
of the fractal model of flaw size distribution. He measured the strength of
glass fibers of various sizes, and showed that the strength increased with de-

creasing sample volume, which is consistent with a weakest-link model for
brittle fracture.5 If we assume that the strength of a given fiber was controlled by the

largest flaw in the sample, we can estimate the density (number/volume) of

the critical flaw from the reciprocal of the sample volume. From Eq. (8), we

know that the critical flaw size is proportional to yf- 2 . Thus a plot of recipro-

cal volume versus strength-2 should yield a straight line is the flaw size dis-

tribution in the material is fractal.

Figure 7 is a plot of flaw density (l/V) versus relative flaw size (rf- 2).55 The plot is linear over several decades, and the estimated fractal dimension is

1.34. As the sample volume becomes large, the curve deviates from the lin-3 ear trend, as the critical flaw size reaches an upper limit. Thus Fig. 7 is consis-

tent with Eq. (6).I
i 5More quantitative estimates of flaw size can be inferred by substituting the appropriate

modulus and surface energy into Eq. (8) and solving for ac. However, we were only interested in
the slope of the p versus ac graph in this case.

I
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I Anderegg (161 performed a similar set of experiments on glass, but with a

more limited range of sample volumes. The flaw density versus size graph is3 shown in Fig. 8. The trend is similar to Fig. 7, but D = 2.46 in this case.

3 5.2 Clustering in Rubber-Toughened PVC

Figure 9 shows a series of scanning electron microscope (SEM) photographs of
the fracture surface of a rubber-toughened polyvinyl chloride (PVC) speci-

men. Note that large voids on the surface contain smaller voids, which con-

tain still smaller voids, and so on. In addition, the photographs at different
magnifications look similar, though not identical, indicating a nearly self-

3 similar void structure.

Such a void structure could be produced by fractal clustering of rubberI particles, such as the idealized arrangement in Fig, 3. Microvoids that form at

the rubbei particles could link other voids in the immediate vicinity, forming

a larger void. These larger voids could then link with other voids formed

from particle clusters, and so on. This type of particle distribution might be

one source of the enhanced toughness in rubber-toughened polymers.

We evaluated the fracture surface at the various magnifications with
image analysis. Figure 10 is a log-log plot of void density (number of3 voids/projected area of fracture surface) versus void diameter for two sam-

ples of PVC. The curves are fairly linear for both samples over roughly two5decades, and D = 1.4 for the void distribution.
The fractal model on void and particle distribution has upper and lower

limits on validity, however. The minimum void size corresponds the parti-

cle diameter, and the upper limit on void size is on the order of the surface

roughness, which is an order of magnitude smaller than the sample cross sec-

5 tion.

3 5.3 Mode II Delamination of Graphite/Epoxy Laminates

3 When a graphite/epoxy laminate specimen with a pre-existing delamination
is subject to Mode II loading, an array of microcracks forms in front of the
macroscopic crack. We performed Mode II delamination experiments on

such a composite material in an effort to determine if the resulting microc-

rack distribution is fractal

U
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I We loaded subsize split laminate specimens in three-point bending us-

ing a tensile stage mounted inside an SEM. These in situ tests enable real-

I time observation of damage [17]. The material was an AS4/3502 composite,

which was chosen because previous studies indicated that this material pro-

I duces an extensive damage zone.

Figure 11 is a series of SEM photographs which show the stages of devel-

opment of a crack tip damage zone. Microcracks form in the resin-rich zone

between plies; the microcracks are oriented 450 from the macroscopic plane,

such that the maximum local tensile stress is normal to the microcracks.

Upon further deformation, the microcracks coalesce with the main crack tip,
resulting in macroscopic crack growth.

INote that the size and spacing of the microcracks in Fig. 11 is relatively

uniform. The microcrack distribution is not fractal in this case; rather, it ap-3parently is governed by the boundary conditions in the body. The Mode II
loading of the specimen induces significant tensile stresses in the resin, which

contains an initial distribution of flaws (that may be fractal). One of these

flaws becomes unstable and propagates normal to the maximum tensile

stress; it arrests when it reaches the fiber-rich zones on either side. When a

second microcrack initiates further ahead of the macroscopic crack tip, a small
volume of material is isolated between the microcracks; this material is

shielded from further stressing; subsequent cracking in this region is there-

fore unlikely. This processes is repeated, as the damage zone forms and the3 macroscopic crack grows by coalescing with the trailing edge of the damage

zone. The microcrack spacing is governed by a competition between a decay-

ing stress field away from the tip of the damage zone and the need to sample

sufficient material to find a critical nucleus for microcrack initiation.
In summary, this experimental study indicated that the damage zone

that forms ahead of a macrocrack subject to Mode II loading is not fractal, but

the initial flaw distribution resulting from fabrication may be fractal. We
Shave attempted to model the damage zone with finite element analysis in

order to evaluate local stress fields, but we have yet to obtain satisfactory re-

3 suits.

I
U
I
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1 6.0 SUMMARY AND CONCLUSIONS

I Fractal geometry can describe microstructural heterogeneity simply and com-
pactly. Both the size distribution and spatial distribution can be characterizedIwith a fractal dimension. The scaling nature of fractals may prove to be useful
when formulating models to connect microscale damage with global mechan-3 ical response.

This study represents a preliminary investigation of the usefulness of
fractal geometry in damage modeling. One of the most important results was

the derivation of the Weibull distribution for the strength of brittle solids,
where a relationship between the Weibull shape parameter and the fractal3 dimension of the flaw distribution was demonstrated. Previously, the
Weibull distribution was merely a phenomenological description fracture3 strength. This research also resulted in simple models for stable damage de-
velopment, which indicate that the recent work by Schapery [14] on path-in-
dependent work potentials may provide a framework for developing refined

damage models for materials with fractal microstructures.

Several examples of fractal phenomena in real materials were presented,
including the flaw size distribution in glass and the particle spatial distribu-
tion in rubber-toughened PVC. Mode II loading of a split laminate5 graphite/epoxy specimen produces an array of microcracks, but the distribu-
tion is not fractal for the material studied. However, these microcracks initi-3 ate from a distribution of initial flaws that may be fractal. It appears that frac-

tal microstructures can form when there is some degree of randomness; for
example, the flaw size distribution in glass and the particle distribution in the

polymer specimens were the result of material processing. Fractal structures
are much less likely when the features form as a result of deterministic rules,
such as the microcrack propagation and arrest in the composite specimen.

The recommended areas for further study include:I
Application of the path independent potential approach or other3 methodology to develop three-dimensional damage evolution mod-

els for materials with fractal microstructures. The ultimate goal
would be a unified model to relate microstructure to global mechani-

cal response.

I
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1 • Development of void growth models that quantify the relationship

between fractal clustering and toughening.I
* Incorporation of related mathematical concepts such as percolation5theory and chaos theory into damage models.

0 Further analysis of damage zone development during Mode II delam-
ination of fiber-reinforce composites.

I
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FIGUTRE 1. Coastline length measurements as a function of the length of the line segment
used to approximate the coastline [2]. When a Euclidian shape such as circle isU approximated by a series of line sengments, the perimeter converges to the true
value as the size of the segment decreases. When a curve is fractal, however, the3true length is infinite, and the measured length does not converge.

FIGURE 2. Koch snowflake [2], which is generated by adding two small apexes to each larger

apex; this constructionis carried on to infinity, such that the resulting shape has an

infinite perimeter but a finite area. D = log 4/log 3 = 1.2618 in this case.
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Process Zone

FIGURE 6. Process zone created during propagation of a macroscopic crack.

GLASS FIBERS (GRIFFITH, 1920)3. 10 D =1.34
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3FIGURE 7. Fracture strength data for glass fibers from Griffith [151, which shows that the
flaw size distribution is fractal over several orders of magnitude.
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